3.1917 \(\int \frac {1}{\sqrt {a+\frac {b}{x^2}} x} \, dx\)

Optimal. Leaf size=24 \[ \frac {\tanh ^{-1}\left (\frac {\sqrt {a+\frac {b}{x^2}}}{\sqrt {a}}\right )}{\sqrt {a}} \]

[Out]

arctanh((a+b/x^2)^(1/2)/a^(1/2))/a^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 24, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {266, 63, 208} \[ \frac {\tanh ^{-1}\left (\frac {\sqrt {a+\frac {b}{x^2}}}{\sqrt {a}}\right )}{\sqrt {a}} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[a + b/x^2]*x),x]

[Out]

ArcTanh[Sqrt[a + b/x^2]/Sqrt[a]]/Sqrt[a]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {a+\frac {b}{x^2}} x} \, dx &=-\left (\frac {1}{2} \operatorname {Subst}\left (\int \frac {1}{x \sqrt {a+b x}} \, dx,x,\frac {1}{x^2}\right )\right )\\ &=-\frac {\operatorname {Subst}\left (\int \frac {1}{-\frac {a}{b}+\frac {x^2}{b}} \, dx,x,\sqrt {a+\frac {b}{x^2}}\right )}{b}\\ &=\frac {\tanh ^{-1}\left (\frac {\sqrt {a+\frac {b}{x^2}}}{\sqrt {a}}\right )}{\sqrt {a}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B]  time = 0.02, size = 50, normalized size = 2.08 \[ \frac {\sqrt {a x^2+b} \tanh ^{-1}\left (\frac {\sqrt {a} x}{\sqrt {a x^2+b}}\right )}{\sqrt {a} x \sqrt {a+\frac {b}{x^2}}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[a + b/x^2]*x),x]

[Out]

(Sqrt[b + a*x^2]*ArcTanh[(Sqrt[a]*x)/Sqrt[b + a*x^2]])/(Sqrt[a]*Sqrt[a + b/x^2]*x)

________________________________________________________________________________________

fricas [B]  time = 0.85, size = 80, normalized size = 3.33 \[ \left [\frac {\log \left (-2 \, a x^{2} - 2 \, \sqrt {a} x^{2} \sqrt {\frac {a x^{2} + b}{x^{2}}} - b\right )}{2 \, \sqrt {a}}, -\frac {\sqrt {-a} \arctan \left (\frac {\sqrt {-a} x^{2} \sqrt {\frac {a x^{2} + b}{x^{2}}}}{a x^{2} + b}\right )}{a}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b/x^2)^(1/2)/x,x, algorithm="fricas")

[Out]

[1/2*log(-2*a*x^2 - 2*sqrt(a)*x^2*sqrt((a*x^2 + b)/x^2) - b)/sqrt(a), -sqrt(-a)*arctan(sqrt(-a)*x^2*sqrt((a*x^
2 + b)/x^2)/(a*x^2 + b))/a]

________________________________________________________________________________________

giac [B]  time = 0.25, size = 48, normalized size = 2.00 \[ -\frac {\log \left ({\left | -2 \, {\left (\sqrt {a} x^{2} - \sqrt {a x^{4} + b x^{2}}\right )} \sqrt {a} - b \right |}\right )}{2 \, \sqrt {a}} + \frac {\log \left ({\left | b \right |}\right )}{2 \, \sqrt {a}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b/x^2)^(1/2)/x,x, algorithm="giac")

[Out]

-1/2*log(abs(-2*(sqrt(a)*x^2 - sqrt(a*x^4 + b*x^2))*sqrt(a) - b))/sqrt(a) + 1/2*log(abs(b))/sqrt(a)

________________________________________________________________________________________

maple [B]  time = 0.00, size = 46, normalized size = 1.92 \[ \frac {\sqrt {a \,x^{2}+b}\, \ln \left (\sqrt {a}\, x +\sqrt {a \,x^{2}+b}\right )}{\sqrt {\frac {a \,x^{2}+b}{x^{2}}}\, \sqrt {a}\, x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+b/x^2)^(1/2)/x,x)

[Out]

1/((a*x^2+b)/x^2)^(1/2)/x*(a*x^2+b)^(1/2)*ln(a^(1/2)*x+(a*x^2+b)^(1/2))/a^(1/2)

________________________________________________________________________________________

maxima [B]  time = 1.90, size = 37, normalized size = 1.54 \[ -\frac {\log \left (\frac {\sqrt {a + \frac {b}{x^{2}}} - \sqrt {a}}{\sqrt {a + \frac {b}{x^{2}}} + \sqrt {a}}\right )}{2 \, \sqrt {a}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b/x^2)^(1/2)/x,x, algorithm="maxima")

[Out]

-1/2*log((sqrt(a + b/x^2) - sqrt(a))/(sqrt(a + b/x^2) + sqrt(a)))/sqrt(a)

________________________________________________________________________________________

mupad [B]  time = 1.31, size = 18, normalized size = 0.75 \[ \frac {\mathrm {atanh}\left (\frac {\sqrt {a+\frac {b}{x^2}}}{\sqrt {a}}\right )}{\sqrt {a}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x*(a + b/x^2)^(1/2)),x)

[Out]

atanh((a + b/x^2)^(1/2)/a^(1/2))/a^(1/2)

________________________________________________________________________________________

sympy [A]  time = 1.29, size = 17, normalized size = 0.71 \[ \frac {\operatorname {asinh}{\left (\frac {\sqrt {a} x}{\sqrt {b}} \right )}}{\sqrt {a}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b/x**2)**(1/2)/x,x)

[Out]

asinh(sqrt(a)*x/sqrt(b))/sqrt(a)

________________________________________________________________________________________